FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

R. J. Spiegel

U.S. Environmental Protection Agency Research Triangle Park, NC 27711

U.S. DOE Natural Gas/Renewable Energy Hybrids Workshop

August 7 - 8, 2001 National Energy Technology Laboratory Morgantown, WV

WE ARE RUNNING OUT OF ENVIRONMENT FASTER THAN WE ARE RUNNING OUT OF FOSSIL FUELS

ANAEROBIC DIGESTER GAS DEMONSTRATION (Schedule of Project Events)

- Site is Yonkers, NY Wastewater Treatment Plant
 - Conceptual design study defining issues associated with ADG as feedstock for fuel cells
 - Completed 1995
 - Construction and testing of ADG pretreatment system
 - Completed 1998
 - Two year field test of fuel cell energy recovery system
 - Completion scheduled for July 2001

METHANE GAS EMISSIONS

- Methane is a greenhouse gas, 20 times more potent than carbon dioxide
- Atmospheric concentration of methane has risen subnstantially during the the past few hundred years
- Total worldwide emissions are running about 500 Tg annually
- Methane buildup is estimated to contribute about 20% of the radiative forcing increase due to the buildup of all greenhouse gases
- Methane sources:
 - landfills
 - gas pipeline leaks
 - coal mines
 - rice cultivation
 - livestock operation
 - anaerobic digesters

POTENTIAL MARKET

GLOBAL

U.S.

Source	Methane (Tg/Yr)	Potential Electric Power (MW)	Methane (Tg/Yr)	Potential Electric Power (MW)
Landfills	35	11,000	9	2,700
Digesters				
*Water Treatment	35	13,000	5	1,800
*Animal Waste	15	5,300	3	1,000
Coal Mines	35	13,000	4	1,400

Conclusion: Large potential market for innovative technology with higher energy efficiency and minimal by-product emissions

LOCATION AND QUANTITY OF POTENTIAL ANAEROBIC DIGESTER GAS PC25 FUEL CELLS

PC25 FUEL CELLS AT BIOMASS FACILITIES

EMISSION REDUCTION

- 200 kW fuel cell operating on anaerobic digester gas
- North Atlantic Plant
- Emission reduction results from:
 - Displaced electricity
 - Flare elimination
- Pounds per year
 - $-4,100 \text{ NO}_{x}$
 - $-3,500 SO_{x}$
 - 4,100 CO
 - $-2,700,000 \text{ CO}_2$
 - 684,000 CH₄

WASTE METHANE/FUEL CELL COST OF ELECTRICITY

Fuel Cell / Digester Energy Recovery Concept

WASTE WATER TREATMENT

1045-7

Yonkers, NY

GAS CLEAN-UP ISSUES

- Constituents that poison fuel cell catalyst
 - Sulfur
 - Halides
- Variability of gas composition
- Fuel cell has some built-in protection; supplemental clean-up required for waste methane sources

PC25 MODIFICATIONS REQUIRED FOR ADG

- Larger fuel injector
 - Higher volumetric flow rate
- Larger piping
- Internal halide scrubber
- Software modifications
- External sulfur scrubber

Figure 3. Process Schematic of Commercial ADG Pretreatment System

FUEL CELL POLISHER BEDS

- Zinc Oxide Catalyst
 - Reacts with sulphur compounds to remove sulphur
 - Catalyst converted to zinc sulphide
- Activated Alumina Impregnated with Potassium Permanganate
 - Potassium permanganate reacts to oxidize any remaining halogenated hydrocarbons

TEST RESULTS

PERFORMANCE OF ADG SULFUR REMOVAL SYSTEM

SUMMARY OF ANAEROBIC DIGESTER GAS

Composition and contaminants, plus fuel cell emissions

YONKERS ADG FUEL CELL

- Unit in operation ~ 3 years
- Successful operation
- Operation provided valuable "lessons learned"
 - Implemented in future power plants/Installations

"SPIN OFF" ANAEROBIC DIGESTER FUEL CELL POWER PLANTS FROM YONKERS DEMONSTRATION PROJECT

- DEER ISLAND, MA (BOSTON HARBOR)
- PORTLAND, OR
- LAS VIRGENES MUNCIPAL WATER DISTRICT IN CALABASAS, CA (2 FUEL CELLS)
- COLOGNE, GERMANY

USE OF ANAEROBIC DIGESTER GAS

Waste water treatment plant, Boston, Massachusetts

Anaerobic Digester Gas - PC25 Installation

CONCLUSIONS

- Digester gas market is viable today
 - Several commercial spinoffs
- Fuel cells are capable of being sited in NO_x and CO nonattainment areas
- No major technical hordles
 - Commercial fuel cell technology available
 - Gas cleanup system works